
Correctness of Software
Safety Policies

SOLUTIONPROBLEM

• How do we actually build a safety policy?
• How can we ensure there are no errors in the

safety policy itself?

We distinguish
• safety properties -- intuitive but formal definitions

of which programs are safe, from
• safety policies -- sets of rules enforcing safety.

We can automatically generate a safety policy from a
safety property and ensure the correctness of the
policy with respect to the property.

Software safety is a complex and ill-defined notion.
Past work has concentrated on specific aspects of
software safety (e.g. memory access safety) using
formal safety policies. But:

Logical
View

Compiler

Safety policy
P => P’ P’{c}Q

P{c}Q

auto-generate

Program
for(i=0; i<n;i++){

if(a>b){
x[i]=x[i]+10;

VCG

VCs

safe correct incorrect

Safety
“all memory accesses are safe”

Machine Code
load a, 2
add b, a...

...0. →≤≤∀ nii

Program
View

unsafe

zyx =∨= 0

equivalent

ahixalo __ ≤≤
Safety Property

enforces

TECHNOLOGY
We are developing automated code certification
technology to extend our automated code generators.
A generic Verification Condition Generator (VCG) then
applies an explicit safety policy to a program, returning
a set of verification conditions (VCs), which can be
checked automatically.

Explanation of Accomplishment

• POC: Ewen Denney (ASE Group, Code IC, edenney@email.arc.nasa.gov)
• Background: Program certification techniques formally show that programs satisfy certain

safety policies. They rely on the correctness of the safety policy which has to be established
externally. We have investigated an approach to showing the correctness of safety policies
which are formulated as a set of Hoare-style inference rules on the source code level. We
have developed a framework which is generic with respect to safety policies and which
allows us to establish that proving the safety of a program statically guarantees dynamic
safety, i.e. that the program never violates the safety property during its execution.

• Accomplishment: We have formalized a selection of safety properties in our framework,
and shown that they are sound and complete with respect to a semantic notion of safety.
We have developed a generic method of doing this for arbitrary safety properties, thus
showing how a safety policy can be automatically derived from a safety property and an
operational semantics. This serves as the blueprint for the implementation of a verification
condition generator which can be parameterized with different safety policies. The principle
difficulty has been finding a general definition of safety property which enables this
automatic derivation. We have answered these questions, and thus shown how generic
safety policies can be. This is a significant conceptual insight.
Benefits: Safety assurance is a necessary precondition for the application of code
generation technology in safety-critical areas. By automating the generation of safety
policies, we increase their ease of use and better enable modifications to be made.

• Future Work: We will look at the automated generation of safety documents – textual
explanations of why a program satisfies a safety policy. This will be useful for Flight
Readiness Review (FRR) acceptance of auto-generated software.

mailto:edenney@email.arc.nasa.gov

	Explanation of Accomplishment

